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In the context of uncertainty quantification for electrical devices, polynomial chaos methods are known to provide fast and accurate
results. Sparse approximations are employed for problems characterized by high dimensional uncertainty. Non-intrusive computation
of surrogate models may employ interpolation, projection or regression schemes. The choice of method is critical in the case of
computationally demanding models, e.g. finite element magnet models, where accurate results must be achieved with a minimum
number of model evaluations. The present paper considers the ordinary least squares and least angle regression methods, applied to
a stochastic Stern-Gerlach magnet model. Results regarding surrogate model accuracy and computational costs are presented.
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I. INTRODUCTION

Due to fabrication imperfections, electrical devices deviate
from their specifications, e.g. with respect to their geometrical
characteristics. These uncertainties cannot be avoided even for
highly specialized devices, such as Stern-Gerlach magnets used
in physics research [4], and can affect output quantities of
interest (QoI) of the device. However, their impact on QoI can
be quantified by computing statistical measures (e.g. moments,
sensitivity indices) as part of the simulations undertaken during
the device’s design phase.

Polynomial chaos (PC) [11] approximations based on ordi-
nary least squares (OLS) regression [7] can provide accurate re-
sults and reliable surrogate models with few model evaluations,
when a low number of uncertainties is considered. Problems
featuring a large number of uncertain parameters must be dealt
with sparse approximations, like the least angle regression
(LAR) [5] method. While quite successful, see e.g. [8], LAR
is rarely encountered in the context of electromagnetics. In
this work, both OLS and LAR are applied to a Stern-Gerlach
magnet model with 10 input random variables (RVs).

II. NON-INTRUSIVE POLYNOMIAL CHAOS

Non-intrusive PC uses a fixed set of model evaluations to
approximate a QoI with the polynomial chaos expansion (PCE)

Q (y) ≈ Q̃ (y) =

K∑
k=1

βkΨk (y) , (1)

where βk are scalar coefficients and Ψk are multivariate
polynomials, orthonormal w.r.t. the joint probability density
function (PDF) of the independent RVs Y = (Y1, . . . , YN )
[11]. Assuming a total degree basis with maximum polynomial
order P , the number of PCE terms is K = (P +N)!/(P !N !).

The OLS collocation method [7] computes coefficients βk
by solving the minimization problem

β̂ = arg min
β

M∑
m=1

(
Q
(
y(m)

)
− Q̃

(
y(m)

))2
. (2)

Problem (2) is well-conditioned if the number of model eval-
uations is M = cK, with c > 1 being a sampling coefficient.
Typical choices are c = 2, 3 [7]. Since the Smolyak sparse
quadrature [1] schemes employed by spectral projection [6]
or stochastic collocation [10] result in M ≈ 2PNP /P !,
OLS collocation’s computational costs are lower for the same
number of terms K. For a comparison, see Fig. 2. While a
comparison on approximation errors versus collocation points
is not presented, in Section IV we show that OLS yields
acceptable approximation errors, hence the choice of method
is justified.

Sparse approximations, i.e. with a few non-zero coefficients
βk, can be derived with the LAR method, even for M < K.
Hence, LAR is especially well suited for cases where a large
number of RVs is present, exactly because of the increase in
approximation terms K. The LAR algorithm reads as follows:

1) Set all coefficients to zero. Set residual r equal to the
vector of model evaluations qM .

2) Find polynomials Ψ most correlated to the current resid-
ual.

3) Estimate corresponding coefficients β with OLS.
4) Compute new residual r = r−γβΨ, where γ is a descent

direction coefficient.
5) Repeat steps (2)-(4) until min (K,M − 1) coefficients

have been computed or until the residual change is
insignificant.

For M > K, the OLS solution is computed.

III. STOCHASTIC STERN-GERLACH MAGNET MODEL

We consider the Stern-Gerlach magnet model from [9]. The
geometrical degrees of freedom (DoF), i.e. x-y coordinates and
weights of the control points which describe the geometry of
the magnet’s pole region (see Fig. ??), are now introduced as
independent and uniformly distributed RVs.

As QoI we consider the output of the optimization cost
function

Q =
τw
|τavg|

+ ε− τw
|τavg|

ε, (3)
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Fig. 1. Original and optimized geometry of the Stern-Gerlach magnet’s pole
region, described by the control points 1–4 [9].

introduced in [9], with τavg being the average magnetic field
gradient, ε its inhomogeneity and τw a weighting factor.

IV. NUMERICAL RESULTS

An in-house MATLAB-based software was used for the
deterministic magnet model. The Python library OpenTURNS
[2] was used for the regression-based UQ analysis.

Fig. 2 presents the number of model evaluations M for
different polynomial orders P and sampling coefficients c.
For reasons of comparison, the corresponding number of
evaluations needed for the Smolyak projection method is also
presented. Again, note that a complete study should also
include an accuracy-versus-evaluations comparison. This is an
ongoing work and will be part of the full paper.

Regarding the accuracy of the PC approximation, Fig. 3
presents the relative leave-one-out error εLOO [3] w.r.t. M ,
corresponding to P ∈ {2, 3, 4} and c ∈ {0.5, 0.8, 1, 2, 3, 5}.
Error εLOO is chosen due to its reduced sensitivity to overfitting
phenomena. It is defined as

εLOO =

1
M

∑M
m=1

(
Q
(
y(m)

)
− Q̃−m

(
y(m)

))2
var [qM ]

, (4)
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Fig. 2. Model evaluations vs maximum polynomial order for 10 RVs.
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Fig. 3. Model evaluations vs relative leave-one-out (LOO) error.

where Q̃−m is the surrogate model built without the m-th
collocation point. It can be observed that accurate enough
surrogate models can be built with only a few available
evaluations. Accuracy increases with the polynomial order and
with the number of available model evaluations, as expected.
Surrogate models which satisfy the desired accuracy demands
can then be employed for otherwise computationally expensive
studies, e.g. sensitivity analyses.
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